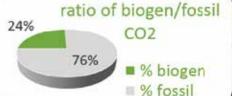
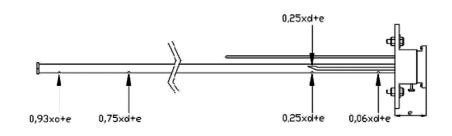
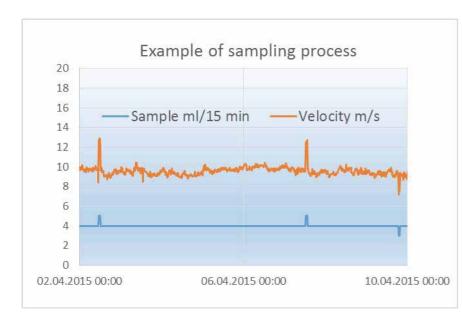

Applications

based as well as calculation based approach.

Information and specification herein are subject to revision without prior notice. © Copyright 2015 by Genius5-Instruments GmbH, Kottingbrunn All rights reserved. Printed in Austria.

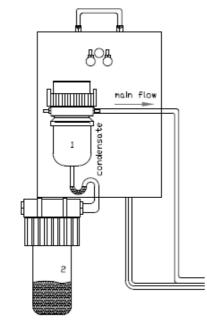

Genius5-Instruments GmbH 2542 Kottingbrunn Anzengrubergasse 30 Austria Phone: +43 676 4304383 Fax: +43 890346 15 info@genius5-instruments.com find your local distributor at: www.genius5-instruments.com




25

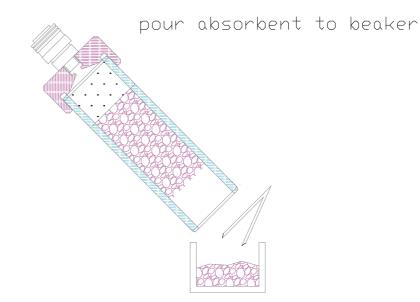
How pmCTrace[®] take samples at the stack

The system take a very small gas sample proportional to the velocity in the stack with EN/ISO 13833. Sample size varies from 0.2 to 30 ml/min. The velocity in the stack is measured using the Genius5-pitotsensor.


The gas is sucked over a cartridge, filled with absorbent, which samples humidity and CO₂ in a quantitative way. Long term sampling is done over a periode of 2 weeks up to 1 month. In 1 month, the CO₂ content of 0,5 ml/min x 60 min x 24 hours x 30 days = 21,6 liters of flue gas is extracted. With 10% CO₂ and 20% H₂O, 4,4 g of CO₂, dependent on proportional factor, is sampled in 1 cartridge. While the sampling periode the operator registers alternative and biomass fuels with amount and specification, to calculate the reference pmC value for 100% biomass.

Technical data:

Extraction unit		Controller unit	
Flange size	min 3"	Power supply	230 VAC
Box	stainless steel 316	Cartridges	CO ₂ absorber
Stack diameter	100 to 5000 mm		backup
Temperature	up to 400°C in stack	Massflow	0,2 to 10 ml/min
	-10 to 70°C outside	Temperature	-10 to 60°C
Velocity	3 - 40 m/sec	Humidity	not condensing



Features			
Usage	support regulation 601/2012		
	to measure exactly the		
	biogenic fraction		
Standard	EN ISO 13833:2013		
Representativeness	samples at 4 stack positions		
Sample aliquot	prop. to velocity		
	ppb range		
Documentation	every 15 min		
	csv and jpg format		
Report media	USB memory stick		

Measurement of the biomass fraction (BF)

After the measurement periode, the cartridges are sent to Genius5-Instruments, where the cartridge is weighted and the absorbent is removed and packed in a sealed bottle. New absorbent mixture is inserted to the cartridge. All of these processes are done in a glove box with very low CO₂ levels to ensure low blanks.

select white absorbent

The ¹⁴C laboratory evaluates the sample with high accelleration mass spectrometry and calculates the biogenic fraction, based on the the reference 105 pmC = 100% biogenic. Typical accurracy of the pmC result is within 0,3 %.

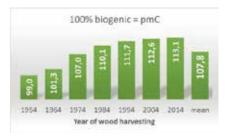
Based on the fuel specifications and measured fuel amounts from the standard methodology, the reference pmC (100% biogenic = pmC) is calculated summing up all of the fuels with their portion and individual pmC value, based on age and year of harvest.

Biogenic Fuel	Humidity	Mass stream	Analysis	CO ₂ dry,	Individual	Individual	Input to
		wet		net	CO ₂ of fuel	reference	reference
	[M%]	[t/month]	[% C]	[t/month]	[%]	[pmC]	[pmC]
biogas	0,0	100	79,9	293	2,2	102	2,2
sewage sludge	50	1.900	27,0	941	6,9	104	7,2
wood	12	8.000	48,0	12.390	90,9	108	98,2
pmC reference							107,6
resultat ¹⁴ C lab							105,7

BF = 0,982, % biogenic = 98,2 %

 $pmC_{reference}^{*} = \sum pmC_{individual} * individual CO_{2}$ $BF(biomass fraction) = resultat^{14}C_{lab} / pmC_{reference}$

Total CO ₂ emissions (biogenic + fossil)	13.624 t CO ₂ /mon	
Fossil CO₂ emissions	240 t CO ₂ /mon	


* as a function of of harvest year and mean age of harvested biomass

Providing the accurate value of the biomass fraction (BF)

Genius5-Instruments GmbH



th

nth

